Do you know why $\sqrt{3}$ isn't rational?

We will now show that $\sqrt{3}$ is irrational by supposing that we could write $\sqrt{3}$ as a fraction of counting numbers and by deducing that this could not be the case. So suppose that

$$
\sqrt{3}=\frac{A}{B}
$$

where A and B are counting numbers. Then

$$
\begin{aligned}
& 3=\left(\frac{A}{B}\right)^{2} \\
& 3=\frac{A^{2}}{B^{2}}
\end{aligned}
$$

By multiplying both sides of this equation by B^{2}, we have

$$
3 \cdot B^{2}=A^{2}
$$

Now imagine factoring A and B into product of prime numbers.
Then A^{2} has an even number of prime factors because it has twice as many prime factors as A does. For example, if A were 42 , then

$$
A=2 \cdot 3 \cdot 7
$$

and

$$
A^{2}=2 \cdot 3 \cdot 7 \cdot 2 \cdot 3 \cdot 7
$$

which has 6 prime factors, twice as many as A. Similary $3 \cdot B^{2}$ has an odd number of prime factors because it has one more than twice as many prime factors as B. Fo example, if B were 35, then
and

$$
B=5 \cdot 7
$$

which has 5 prime factors, one more than twice as many as B.
But if $3 \cdot B^{2}$ has an odd number of prime factors and A^{2} has an even number of prime factors then it cannot be the case that

$$
3 \cdot B^{2}=A^{2}
$$

Therefore, it cannot be the case that

$$
\sqrt{3}=\frac{A}{B}
$$

where A and B are counting numbers. Thus, $\sqrt{3}$ is irrational.

